Overview on New RRs in China

CHEN Huiqiang China Institute of Atomic Energy

Contents

- A. China Advanced Research Reactor (CARR)
- B. China Experimental Fast Reactor (CEFR)

Part A CARR

- Reactor complex
- Design parameters
- Safety systems
- Utilization

• Tank- in-Pool

- 60 MW
- H2O coolant, D2O reflector
- Maximum thermal neutron flux: 8×10¹⁴ n-cm⁻²-s⁻¹ (in reflector)

Pool

- Plate type
- ²³⁵U enrichment: 19.75 wt%
- 17 Fuel Assemblies (FA)
- 21 plates in each FA Meat: U₃Si₂-Al, thickness=0.6mm Cladding: 6061 Al alloy, thickness=0.38mm

2

- Neutron absorb: Hafnium
- Shim rods : 3
- Regulating rods : 1
- Safety rods :

CARR___Reactor Complex Reactor Vessel

- Al alloy, life ≈ 10 years
- D=459mm
- Separating H2O and D2O

Reactor vessel

CARR____Reactor Complex Heavy Water Tank

- **D** = 2200mm
- Material= SS
- H heavry water =2320mm

H _{heliume} =190mm

Heavy Water Tank

Heavy Water Tank

• 3 Cylinders: inner + middle + outer

- **D**_{outer cylinder} = **D**_{reactor pool}
- Material= SS
- Decay time=40 s

Decay Tank

Decay Tank

CARR Reactor Complex Coolant Guiding Tank

- **D** = 1364mm
- Material= SS
- Making coolant flow stably

Coolant Guiding Tank

Coolant Guiding Tank

CARR Reactor Complex Coolant Guiding Tank

- **D** = 1364mm
- Material= SS
- Making coolant flow stably

• CRDM for safety rods: Hydraulic

CRDM for other rods: Electromagnetic \bigcirc

CRDM

CARR____Design parameters

Power	MW	60
Equivalent diameter of active area	cm	39.92
Height of active area	cm	85
Maximum thermal neutron flux	n/ (cm ² .s)	~1.0×10 ¹⁵
Primary coolant flow rate	m³/h	2385
Primary coolant inlet pressure	MPa	0.936
Primary coolant outlet temperature	°C	56
Depth of reactor pool	m	15.54
Inner diameter of reactor pool	m	5.5

Control rod falling

Triggered by FRPS and SRPS

• Heavy water discharge

Triggered by SRPS

CARR—Reactor shutdown Protection variable of FRPS

1	Reactor power	Over setting value
2	period of reactor power	Under setting value
3	Primary coolant inlet temperature	Over setting d value
4	Primary coolant outlet temperature	Over setting value
5	Primary coolant inlet pressure	Under setting value
6	Primary coolant inlet flow rate	Under setting value
7	secondary coolant inlet pressure	Under setting value
8	Dosage of coolant	Over setting value
9	Dosage above reactor pool	Over setting value

CARR—Reactor shutdown Protection variable of FRPS

10	Dosage of stack drainage	Over standard value
11	Radioactivity of inert gases in reactor hall	Over setting value
12	Inlet temperature of heavy water	Over setting value
13	Outlet temperature of heavy water	Over setting value
14	Heavy water flow rate	Under setting d value
15	Power supply	OFF
16	Frequency of off-site power	Under setting value
17	Pressure in operation hall	Over setting value
18	The ratio of thermal power to nuclear power	Over setting value
19	The ratio of heavy water thermal power to reactor power	Over setting value

CARR—Reactor shutdown Protection variable of SRPS

1	Reactor power	Over standard value
2	Primary coolant outlet temperature	Over standard value
3	y dose of primary coolant	Over standard value
4	Power supply	OFF

- 2 pumps running continuously
- Cooling pool water under normal condition
- Cooling core under LOCA/LOFA condition

CARR----ECCS

Fig.1 Flow Diagram of CARR ECCS

2010,5 ,13 First critical reached 2011,9,22 Phase B commission finished

Part B CEFR

- Reactor Block
- Design parameters
- Safety systems

COMPUTER IMAGINATION OF CEFR

Building

CEFR REACTOR BLOCK

- Pool type
- 65 MW t / 25 MW e
- Coolant = Sodium

- 81 hexagonal Fuel Assemblies (FA)
- 61 rods in each FA
- ²³⁵U enrichment: 64.4 wt%
- Meat: UO₂ →U-Pu dioxide Cladding: SS D=6mm

Control Rod Assembly

Reactor block

- Shim rod assembly: 3 (B10 enrichment91%)
- Regulating rod assembly : 2 (10%)
- Safety rod assembly :
- Each assembly consists of

CEFR

- Neutron absorb: Cladding :
- 7 rods B₄C SS

3(91%)

- 336 SS Reflector Assemblies (RA)
- 2 types

A: 7 rod (d=20mm) in each RA;

B: 1 rod (d=54mm) in each RA

 In the future, the 3 inner circles of RAs will be replaced by conversion assemblies for fuel breeding research

- 230 hexagonal Shielding Assemblies (SA)
- Each assembly consists of 7 rods
- Rod Meat:

B₄C (**B10 enrichment=19.8%**) **D= 16.2mm**

• Rod clad: SS, D=19.2

- 8 CRDMs, one for one CRA
- Type A for shim and regulating rod Type B for safety rod

CEFR---CRDM

- H=12765
 - main vessel: d=7960mm, t=25mm guard vessel: d=8185mm, t=25mm
- PCS loops (2) in it, including:
- 2 pumps, 4 intermediate heat exchangers
- 2 independent heat exchangers for RHRS

CFER----Parameters

Thermal Power	MW	65	
Electric Power	MW	20	
Plant life	year	30	
Bum-up, first load max.	MWd/t	60000	
Bum-up, target max.	MWd/t	100000	
Fuel exchange	Day	80	
Fuel (First Loading)		UO2	
Primary loop type		Pool	
Number of circuits per loop		2	
Number of IHX per circuit		2	
Steam pressure	MPa	14	Ę

Reactor Shutdown System

Safety System

CEFR

• FSS + SSS, diversities include: (1) FSS is equipped with magnetic damper SSS is equipped with electromagnetic clutch (2) FFS is actuated by motor power-off SSS is actuated by clutch power-off (3) FSS rod falling by gravity SSS rod falling by gravity and spring And so on

CEFR____Safety System Reactor Shutdown System

• 2 independent reactor protection systems. Variables are:

period, power, outlet temperature, liquid Na level in main vessel, primary flow-rate, secondary flow-rate, feed-water loss of SG, closedown of turbine valve, loss of power supply, earthquake, etc.

Residual Heat Removal System

Safety System

• 2 loops, capacity of each=0.525MW

CEFR

 In the accident condition, reactor residual heat will be transferred to the hot sodium zone by means of primary pump inertia and natural circulation, and then to intermediate loop through independent heat exchangers located in the hot sodium zone, and finally to the atmosphere through air coolers.

CEFR Safety System Containment System

consists of 3 confining boxes and the confinement wherein the 3 boxes located.

- retain and sedimentate the radioactive material
- concrete structure (thickness 1m) 36m×36m×57m (L×W×H)
- Leakage rate is $\leq 5 \Delta v/v/d$ under 100Pa

Safety System **Containment** System---- BOX1

CEFR

When argon pressure reactor vessel reaches 0.06MPa, the liquid-sealing device opens to transfer argon to room **302** for temporary storage and decay, and then to the chimney through ventil ation system. Leakage rate of room 302 is less than $4\% \Delta v/v/d(0.03MPa)$.

CEFR Safety System
Containment System---- BOX2

- Reactor cap, carbon steel.
- When the radioactive level exceeds the setting value, emergency ventilation system starts up to replace the normal ventilation system by which the radioactive argon and Na aerosol can be prevented from escaping into the confinement.

CEFR_____Safety System Containment System---- BOX2

Groove is laid beneath the pipes and equipments in this BOX
In case of accident, the leaked Na will flowed into the groove where isolated space will be formed so that the Na fire can be put out automatically.

CEFR

• First critical

2010/7/21 2011/7/21

谢谢! Thanks for your attention!